MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

SciP : a novel inhibitor of CtrA transcriptional activity in Caulobacter crescentus

Author(s)
Gora, Kasia G. (Kasia Gabriela)
Thumbnail
DownloadFull printable version (14.18Mb)
Alternative title
Novel inhibitor of CtrA transcriptional activity in Caulobacter crescentus
Other Contributors
Massachusetts Institute of Technology. Dept. of Biology.
Advisor
Michael T. Laub.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Cells must sense changes in their environment and respond appropriately in order to survive. A common survival strategy is for cells to translate an environmental signal into the activity of a transcription factor they effects a change in gene expression. In this way, cells can express a gene just-in-time for its biological function. In addition, cells can coordinate the activity of many transcription factors to construct genetic regulatory networks that integrate many inputs to control complex cellular behaviors. In this thesis, I use the model system Caulobacter crescentus to examine the regulation of CtrA, the essential transcription factor at the core of the Caulobacter cell cycle regulatory network. CtrA regulates the activity of approximately 100 cell cycle genes many of which are critical for cell cycle progression. CtrA activity is regulated at the level of abundance, post-transcriptional modification, and here I show that CtrA is also regulated by a novel protein-protein interaction. I identify SciP, a GI specific inhibitor of CtrA transcriptional activity and show that SciP forms a complex with CtrA at CtrA dependent promoters. The SciP/CtrA interaction likely prevents CtrA from recruiting RNA polymerase thereby blocking the activation of transcription. In addition, I show that SciP is restricted to G1 by regulated proteolysis. I identify the Lon as the SciP protease and show that Lon is required for SciP proteolysis in vivo and that E. coli Lon degrades SciP in vitro. Finally I engineer a stable allele of sciP and show SciP proteolysis is critical for proper cell cycle progression.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, September 2011.
 
Cataloged from PDF version of thesis. "August 8, 2011."
 
Includes bibliographical references.
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/68426
Department
Massachusetts Institute of Technology. Department of Biology
Publisher
Massachusetts Institute of Technology
Keywords
Biology.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.