MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Molecular systems analysis of a cis-encoded epigenetic switch

Author(s)
Octavio, Leah M. (Leah Mae Manalo)
Thumbnail
DownloadFull printable version (19.11Mb)
Other Contributors
Massachusetts Institute of Technology. Computational and Systems Biology Program.
Advisor
Gerald R. Fink and Narendra Maheshri.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
An ability to control the degree of heterogeneity in cellular phenotypes may be important for cell populations to survive uncertain and ever-changing environments or make cell-fate decisions in response to external stimuli. Cells may control the degree of gene expression heterogeneity and ultimately levels of phenotypic heterogeneity by modulating promoter switching dynamics. In this thesis, I investigated various mechanisms by which heterogeneity in the expression of FLO 11 in S. cerevisiae could be generated and controlled. First, we show that two copies of the FLOJ1 locus in S. cerevisiae switch between a silenced and competent promoter state in a random and independent fashion, implying that the molecular event leading to the transition occurs in cis. Through further quantification of the effect of trans regulators on both the slow epigenetic transitions between a silenced and competent promoter state and the fast promoter transitions associated with conventional regulation of FLO11, we found different classes of regulators affect epigenetic, conventional, or both forms of regulation. Distributing kinetic control of epigenetic silencing and conventional gene activation offers cells flexibility in shaping the distribution of gene expression and phenotype within a population. Next, we demonstrate how multiple molecular events occurring at a gene's promoter could lead to an overall slow step in cis. At the FLO] 1 promoter, we show that at least two pathways that recruit histone deacetylases to the promoter and in vivo association between the region -1.2 kb from the ATG start site of the FLO11 ORF and the core promoter region are all required for a stable silenced state. To generate bimodal gene expression, the activator Msnlp forms an alternate looped conformation, where the core promoter associates with the non-coding RNA PWR1's promoter and terminator regions, located at -2.1 kb and -3.0 kb from the ATG start site of the FLO]1 ORF respectively. Formation of the active looped conformation is required for Msnlp's ability to stabilize the competent state without destabilizing the silenced state and generate a bimodal response. Our results support a model where multiple stochastic steps at the promoter are required to transition between the silenced and active states, leading to an overall slow step in cis. Finally, preliminary investigations of heterozygous diploids revealed possible transvection occurring at FLO] 1, where a silenced allele of FLO 11 appeared to transfer silencing factors to a desilenced FLO11 allele on the homologous chromosome. These observations suggest a new mechanism through which heterogeneity in FL011 expression could be further controlled, in addition to the molecular events at the FL011 promoter we elucidated previously.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Computational and Systems Biology Program, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references.
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/68433
Department
Massachusetts Institute of Technology. Computational and Systems Biology Program
Publisher
Massachusetts Institute of Technology
Keywords
Computational and Systems Biology Program.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.