MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Testability of linear-invariant properties

Author(s)
Bhattacharyya, Arnab
Thumbnail
DownloadFull printable version (4.505Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Ronitt Rubinfeld.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Property Testing is the study of super-efficient algorithms that solve "approximate decision problems" with high probability. More precisely, given a property P, a testing algorithm for P is a randomized algorithm that makes a small number of queries into its input and distinguishes between whether the input satisfies P or whether the input is "far" from satisfying P, where "farness" of an object from P is measured by the minimum fraction of places in its representation that needs to be modified in order for it to satisfy P. Property testing and ideas arising from it have had significant impact on complexity theory, pseudorandomness, coding theory, computational learning theory, and extremal combinatorics. In the history of the area, a particularly important role has been played by linearinvariant properties, i.e., properties of Boolean functions on the hypercube which are closed under linear transformations of the domain. Examples of such properties include linearity, homogeneousness, Reed-Muller codes, and Fourier sparsity. In this thesis, we describe a framework that can lead to a unified analysis of the testability of all linear-invariant properties, drawing on techniques from additive combinatorics and from graph theory. We also show the first nontrivial lowerbound for the query complexity of a natural testable linear-invariant property.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 75-80).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/68435
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.