MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the capacity of bosonic channels

Author(s)
Blake, Christopher Graham
Thumbnail
DownloadFull printable version (7.815Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Jeffrey H. Shapiro.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The capacity of the bosonic channel with additive Gaussian noise is unknown, but there is a known lower bound that is conjectured to be the capacity. We have quantified the gap that exists between this known achievable rate and rates achievable by the known methods of detection including direct, heterodyne, and homodyne detection. We have also quantified these capacities in the case of multiple independent spatial modes in terms of spectral and photon efficiency. Furthermore, we have considered the ergodic and outage capacities of fading channel models for far-field and near-field propagation through atmospheric turbulence. For the far field, good models for the transmissivity statistics are known. For the near field we establish bounds on these capacities, and we show that these bounds are reasonably tight. Finally, we extend the results for ergodic capacity to the case of multiple spatial modes where a turbulent atmosphere results in crosstalk between different spatial modes.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 97-98).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/68439
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.