Show simple item record

dc.contributor.advisorJohn J. Guinan, Jr.en_US
dc.contributor.authorNam, Hui S., Ph. D. (Hui Sok) Massachusetts Institute of Technologyen_US
dc.contributor.otherHarvard University--MIT Division of Health Sciences and Technology.en_US
dc.date.accessioned2012-01-12T19:29:08Z
dc.date.available2012-01-12T19:29:08Z
dc.date.copyright2011en_US
dc.date.issued2011en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/68455
dc.descriptionThesis (Ph. D.)--Harvard-MIT Division of Health Sciences and Technology, 2011.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractActive motility in outer hair cells (OHCs) amplifies basilar-membrane (BM) and auditory-nerve (AN) responses to low-level sounds. The recent finding that medial olivocochlear (MOC) efferents (which innervate OHCs) inhibit AN initial peak (ANIP) responses from mid-to-high-level clicks, but do not inhibit initial BM responses, suggests a coupling of OHC motility to inner-hair-cell (IHC) stereocilia that is not through the BM. The main thesis objective was to test whether different OHC mechanisms produce AN responses to low-level sounds versus ANIP from mid-to-high-level clicks by comparing the suppressive effects of low-frequency "bias-tones" on these responses. Bias tones suppress by pushing OHC stereocilia into low-slope regions of their mechanoelectric transduction functions thereby lowering OHC amplification, particularly for probe tones near an AN-fiber's characteristic frequency (CF). This suppression occurs at opposite bias-tone phases, with one suppression typically larger than the other. Bias-tone effects were measured on cat AN-fiber responses using 50 Hz bias tones. In the first thesis part, bias-tone suppressive effects on AN responses to low-level clicks and low-level CF-tones were found to be similar, as expected but never previously shown. Then, in the main thesis focus, bias-tone suppressions of AN responses to low-level clicks and ANIP responses were studied. Both responses were suppressed twice each bias-tone cycle, but their major suppressions were at opposite bias-tone phases, which indicates that both ANIP and low-level AN responses depend on the slope of OHCstereocilia mechanoelectric-transduction, but with some significant difference. In the last thesis part, bias-tone suppression effects on low-CF (<4 kHz) AN-fiber responses to low-level CF and off-CF (by >0.7 octaves) tones were studied. Previous work found differences in AN-response group delays between CF and off-CF frequency regions that might arise from two different IHC-drive mechanisms, and the objective was to test this hypothesis. Our results showed similar bias-tone effects in both regions. Overall, the results demonstrate differences and similarities in the OHC mechanisms that produce ANIP and traditional, low-level cochlear amplification, and the results are consistent with the ANIP drive coupling OHC motility to IHC stereocilia without going through BM motion.en_US
dc.description.statementofresponsibilityby Hui S. Nam.en_US
dc.format.extent220 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectHarvard University--MIT Division of Health Sciences and Technology.en_US
dc.titleLow-frequency bias-tone effects on auditory-nerve responses to clicks and tones : investigating multiple outer-hair-cell actions on auditory-nerve firingen_US
dc.title.alternativeInvestigating multiple outer-hair-cell actions on auditory-nerve firingen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technology
dc.identifier.oclc769124465en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record