Show simple item record

dc.contributor.advisorFranz X. Kärtner.en_US
dc.contributor.authorKhilo, Anatol (Anatol M.)en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2012-01-12T19:31:49Z
dc.date.available2012-01-12T19:31:49Z
dc.date.copyright2011en_US
dc.date.issued2011en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/68490
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 161-172).en_US
dc.description.abstractAccurate conversion of wideband multi-GHz analog signals into the digital domain has long been a target of analog-to-digital converter (ADC) developers, driven by applications in radar systems, software radio, medical imaging, and communication systems. Aperture jitter has been a major bottleneck on the way towards higher speeds and better accuracy. Photonic ADCs, which perform sampling using ultra-stable optical pulse trains generated by mode-locked lasers, have been investigated as a promising approach to overcome the jitter problem and bring ADC performance to new levels. This work demonstrates that the photonic approach can deliver on its promise by digitizing a 41 GHz signal with 7.0 effective bits and 52 dBc spur-free dynamic range (SFDR) using a discrete-component photonic ADC. This corresponds to 15 fs jitter, a 4-5 times improvement over the jitter of the best electronic ADCs, and an order of magnitude improvement over the jitter of electronic ADCs operating above 10 GHz. The feasibility of a practical photonic ADC is demonstrated by creating an integrated ADC with a modulator, filters, and photodetectors fabricated on a single silicon chip and using it to sample a 10 GHz signal with 3.5 effective bits and 39 dBc SFDR. In both experiments, a sample rate of 2.1 GSa/s was obtained by interleaving two 1.05 GSa/s channels; higher sample rates can be achieved by increasing the channel count. A key component of a multi-channel ADC - a dual multi-channel high-performance filter bank - is successfully implemented. A concept for broadband linearization of the silicon modulator, which is another critical component of the photonic ADC, is proposed. Nonlinear phenomena in silicon microring filters and their impact on ADC performance are analyzed, and methods to reduce this impact are proposed. The results presented in the thesis suggest that a practical integrated photonic ADC, which successfully overcomes the electronic jitter bottleneck, is possible today.en_US
dc.description.statementofresponsibilityby Anatol Khilo.en_US
dc.format.extent172 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleIntegrated photonic analog-to-digital convertersen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc770399482en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record