Show simple item record

dc.contributor.advisorRichard de Neufville and Mark Welsh.en_US
dc.contributor.authorPage, Jonathan(Scientist in mechanical engineering)(Jonathan Edward)en_US
dc.contributor.otherMassachusetts Institute of Technology. Engineering Systems Division.en_US
dc.date.accessioned2012-01-13T18:44:37Z
dc.date.available2012-01-13T18:44:37Z
dc.date.copyright2011en_US
dc.date.issued2011en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/68572
dc.descriptionThesis (Nav. E.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and, (S.M. in Engineering and Management)--Massachusetts Institute of Technology, Engineering Systems Division, System Design and Management Program, 2011.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 75-77).en_US
dc.description.abstractThis thesis explores design options for naval vessels and provides a framework for analyzing their benefit to the Navy. Future demands on Navy warships, such as new or changing missions and capabilities, are unknowns at the time of the ship's design. Therefore, ships often require costly engineering changes throughout their service life. These are expensive both fiscally - because the Navy pays for engineering and installation work - and operationally - because either a warship cannot carry out a desired mission need or is carrying out a mission for which it was not initially designed. One method of addressing uncertainty in capital assets is by imbedding flexibilities in their architecture. The thesis offers early stage design suggestions on flexibilities for naval platforms to incorporate pre-planned repeats of the platform with new or different missions. A conceptual platform created - the SCAMP - includes each of these suggestions in its architecture. Then, the thesis uses an analysis framework similar to real options to evaluate the value of including these expansion options in early stage design versus traditional design methods and their products. The analysis uses a version of the MIT Cost Model for early stage ship design to determine acquisition and life cycle costs. The model was modified to support this analysis by allowing a simulation of possible mission changes with their severity distributed stochastically over a realistic time horizon. Subsequently, the model calculates these effects on life cycle cost. The most important result is the value of the framework for evaluating these managerial options. This framework can be extended to the subsystem level or to the system-of-systems level. In this application, the model predicts that, on average, a flexible platform should not only cost less to build, but also reduce modernization costs by 9% per ship over its life cycle. Therefore, counterintuitively, building a less-capable ship with the flexibility to expand capabilities or switch missions actually provides greater expected utility during its service life.en_US
dc.description.statementofresponsibilityby Jonathan Page.en_US
dc.format.extent88 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.subjectEngineering Systems Division.en_US
dc.titleFlexibility in early stage design of US Navy ships : an analysis of optionsen_US
dc.typeThesisen_US
dc.description.degreeS.M.in Engineering and Managementen_US
dc.description.degreeNav.E.en_US
dc.contributor.departmentSystem Design and Management Program.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.contributor.departmentMassachusetts Institute of Technology. Engineering Systems Division
dc.identifier.oclc767587660en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record