Show simple item record

dc.contributor.authorKane, Jonathan
dc.contributor.authorHerrmann, Felix
dc.contributor.authorToksoz, M. Nafi
dc.contributor.otherMassachusetts Institute of Technology. Earth Resources Laboratoryen_US
dc.date.accessioned2012-01-17T17:59:14Z
dc.date.available2012-01-17T17:59:14Z
dc.date.issued2001
dc.identifier.urihttp://hdl.handle.net/1721.1/68601
dc.description.abstractSolving linear inversion problems in geophysics is a major challenge when dealing with non-stationary data. Certain non-stationary data sets can be shown to lie in Besov function spaces and are characterized by their smoothness (differentiability) and two other parameters. This information can be input into an inverse problem by posing the problem in the wavelet domain. Contrary to Fourier transforms, wavelets form an unconditional basis for Besov spaces, allowing for a new generation of linear inversion schemes which incorporate smoothness information more precisely. As an example inversion is performed on smoothed and subsampled well log data.en_US
dc.publisherMassachusetts Institute of Technology. Earth Resources Laboratoryen_US
dc.relation.ispartofseriesEarth Resources Laboratory Industry Consortia Annual Report;2001-05
dc.titleWavelet domain linear inversion with application to well loggingen_US
dc.typeTechnical Reporten_US
dc.contributor.mitauthorKane, Jonathan
dc.contributor.mitauthorHerrmann, Felix
dc.contributor.mitauthorToksoz, M. Nafi
dspace.orderedauthorsKane, Jonathan; Herrmann, Felix; Toksoz, M. Nafien_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record