MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Earth Resources Laboratory
  • ERL Industry Consortia Technical Reports
  • View Item
  • DSpace@MIT Home
  • Earth Resources Laboratory
  • ERL Industry Consortia Technical Reports
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An Experimental Study of Turbidite Channel Deposits: Implications for Channel Evolution and Sandstone Deposits

Author(s)
Buttles, James; Minsley, Burke J.; Schweller, Will; Grotzinger, John P.
Thumbnail
Downloadbuttles.pdf (25.43Mb)
Other Contributors
Massachusetts Institute of Technology. Earth Resources Laboratory
Metadata
Show full item record
Abstract
Gaining a detailed understanding of turbidite bed sequences is important for the characterization of sandstone reservoir properties, correlation of well cores, and geological interpretation. Many factors influence the internal structure of sandstone reservoirs: source material, source location in time, transport processes, basin geometry, fan channel development and evolution to name a few. Sandstone deposits associated with channel complexes are easy to find but difficult to develop. Here, we conduct tank experiments of scaled sediment-laden turbidity currents traversing a submerged channel to: (1) establish a state-of-the-art data collection and data processing system that has the potential to gain a unique understanding of the processes and deposits that build submarine fan environments; and (2) to use the facility to demonstrate how the interaction of a depositive turbidity current with a sinuous channel may influence the geometry, spatial relationships and grain size sorting of sandstone deposits. Our data shows the construction of prominent levees, asymmetric levee growth, continuous channel overspill, enhanced channel overspill downstream of bend corners, and lobate-shaped lobe deposits. Our preliminary results are qualitative, but indicate that channel wavelength, bend curvature, and bend peak-to-peak amplitude may have strong controls on down-channel and cross-channel depositional patterns, deposit thickness and grain size sorting.
Date issued
2001-05-11
URI
http://hdl.handle.net/1721.1/68606
Publisher
Massachusetts Institute of Technology. Earth Resources Laboratory
Series/Report no.
Earth Resources Laboratory Industry Consortia Annual Report;2001-11

Collections
  • ERL Industry Consortia Technical Reports

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.