Predicting the adsorption of second generation biofuels by polymeric resins with applications for in situ product recovery (ISPR)
Author(s)
Nielsen, David R.; Amarasiriwardena, Gihan S.; Prather, Kristala L. Jones
DownloadPredicting the Uptake of Biofuels by Polymeric Resins Rev1b1.pdf (214.2Kb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
The application of hydrophobic polymeric resins as solid-phase adsorbent materials for the recovery and purification of prospective second generation biofuel compounds, including ethanol, iso-propanol, n-propanol, iso-butanol, n-butanol, 2-methyl-1-butanol, 3-methyl-1-butanol, and n-pentanol, has been investigated. A simple, yet robust correlation has been proposed to model the relative equilibrium partitioning behavior of a series of branched and n-alcohols as a function of their relative hydrophobicity, and has been applied to ultimately predict their adsorption potential. The proposed model adequately predicts the adsorption behavior of the entire series of alcohols studied, as well as with six different adsorbent phases composed of three different polymer matrices. Those resins with a non-polar monomeric structure and high specific surface area provided the highest overall adsorption of each of the studied compounds. Meanwhile, longer chain alcohols were subject to greater adsorption due to their increasingly hydrophobic nature. Among the tested series of alcohols, five-carbon isomers displayed the greatest potential for economical recovery in future, multiphase bioprocess designs. The present study provides the first demonstration of the ability of hydrophobic polymer resins to serve as effective in situ product recovery (ISPR) devices for the production of second generation biofuels.
Date issued
2010-04Department
Massachusetts Institute of Technology. Department of Chemical EngineeringJournal
Bioresource Technology
Publisher
Elsevier B.V.
Citation
Nielsen, David R., Gihan S. Amarasiriwardena, and Kristala L.J. Prather. “Predicting the adsorption of second generation biofuels by polymeric resins with applications for in situ product recovery (ISPR).” Bioresource Technology 101.8 (2010): 2762-2769.
Version: Author's final manuscript
ISSN
0960-8524