MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Mechanical Engineering
  • Mechanical Engineering - Bachelor's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Mechanical Engineering
  • Mechanical Engineering - Bachelor's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Heat transfer rates for filmwise, dropwise, and superhydrophobic condensation on silicon substrates

Author(s)
Hery, Travis M
Thumbnail
DownloadFull printable version (2.908Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Evelyn N. Wang.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Condensation, a two-phase heat transfer processes, is commonly utilized in industrial systems. Condensation heat transfer can be optimized by using surfaces in which dropwise condensation (DWC) occurs, and even further optimized using superhydrophobic surfaces. For superhydrophobic condensation, a structured silicon surface with pillars 2.1 p.m tall, 200 nm in diameter, and a 400 nm pitch was tested. By removing noncondensable gases (NCG) from the system by means of a steam trap, the heat transfer rates of DWC and SHC were found to be greater than that of filmwise condensation (FWC) by a factor of 2, but indistinguishable from each other. The effect of NCG leads to a 5x reduction in heat transfer rates for both DWC and SHC. DWC heat transfer rates are as much as 50 kW/m 2 less than FWC at the same temperature difference, representing a 25% reduction. However, the SHC heat transfer rates remain above those of FWC by as much as 50 kW/m² at the same temperature difference, representing a 20% improvement. These studies suggest that SHC may be a useful passive method to improve condensation heat transfer rates in the presence of NCG. However, it remains to be seen if SHC can provide better heat transfer rates than DWC under saturated steam conditions.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 24).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/68842
Department
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Mechanical Engineering - Bachelor's degree
  • Mechanical Engineering - Bachelor's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.