MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Scratching by pad asperities in chemical mechanical polishing

Author(s)
Roberts, Michael P. (Michael Philip)
Thumbnail
DownloadFull printable version (2.516Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Jung-Hoon Chun.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The exponential increase through time in the number of components in a typical integrated circuit, known as Moore's Law, is driving the need for improvements in manufacturing. A key semiconductor manufacturing process is chemical-mechanical polishing (CMP), which is used to create connecting metal channels above the transistors in a chip. A typical form of this process used in industry is metal CMP. Metal CMP is the process of using a pad combined with an abrasive slurry to remove excess material, such as Cu, and planarize a surface. The continuing trend to increase the number of components per chip leads to the necessity of Cu features being increasingly small. This increases the resistance of each copper connection, leading to an increase in the RC time delay of each circuit. To counteract the increase in resistance, the use of low dielectric constant (k) materials in place of SiO₂ has been explored. Low-k dielectrics are much softer than SiO₂, which has led to problems with scratching of the Cu during CMP, resulting in faulty parts. Recent research by Thor Eusner indicates that the pad used to polish the surface, not the abrasives in the slurry, may be responsible for the scratching of the Cu surface. This thesis applies this pad asperity scratching model to several CMP pads. The most relevant parameters to scratching, pad to copper hardness ratio and the coefficient of friction, are measured for each pad and the results indicate that scratching should be a problem with nearly all of the pads. This indicates that current CMP pads or slurries are too hard, have too much friction, have asperities that are too sharp, or some combination of these factors. Reengineering CMP pads and slurries is thus recommended to alleviate scratching by pad asperities.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 23).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/68855
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.