MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Case studies in quantum adiabatic optimization

Author(s)
Gosset, David (David Nicholas)
Thumbnail
DownloadFull printable version (13.18Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Physics.
Advisor
Edward Farhi.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Quantum adiabatic optimization is a quantum algorithm for solving classical optimization problems (E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. Quantum computation by adiabatic evolution, 2000. arXiv:quant-ph/0001106). The solution to an optimization problem is encoded in the ground state of a "problem Hamiltonian" Hp which acts on the Hilbert space of n spin 1/2 particles and is diagonal in the Pauli z basis. To produce this ground state, one first initializes the quantum system in the ground state of a different Hamiltonian and then adiabatically changes the Hamiltonian into Hp. Farhi et al suggest the interpolating Hamiltonian [mathematical formula] ... where the parameter s is slowly changed as a function of time between 0 and 1. The running time of this algorithm is related to the minimum spectral gap of H(s) for s E (0, 11. We study such transverse field spin Hamiltonians using both analytic and numerical techniques. Our approach is example-based, that is, we study some specific choices for the problem Hamiltonian Hp which illustrate the breadth of phenomena which can occur. We present I A random ensemble of 3SAT instances which this algorithm does not solve efficiently. For these instances H(s) has a small eigenvalue gap at a value s* which approaches 1 as n - oc. II Theorems concerning the interpolating Hamiltonian when Hp is "scrambled" by conjugating with a random permutation matrix. III Results pertaining to phase transitions that occur as a function of the transverse field. IV A new quantum monte carlo method which can be used to compute ground state properties of such quantum systems. We discuss the implications of our results for the performance of quantum adiabatic optimization algorithms.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 139-143).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/68872
Department
Massachusetts Institute of Technology. Department of Physics
Publisher
Massachusetts Institute of Technology
Keywords
Physics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.