MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Data assimilation with Gaussian mixture models using the dynamically orthogonal field equations

Author(s)
Sondergaard, Thomas, S.M. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (18.45Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Pierre F. J. Lermusiaux.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Data assimilation, as presented in this thesis, is the statistical merging of sparse observational data with computational models so as to optimally improve the probabilistic description of the field of interest, thereby reducing uncertainties. The centerpiece of this thesis is the introduction of a novel such scheme that overcomes prior shortcomings observed within the community. Adopting techniques prevalent in Machine Learning and Pattern Recognition, and building on the foundations of classical assimilation schemes, we introduce the GMM-DO filter: Data Assimilation with Gaussian mixture models using the Dynamically Orthogonal field equations. We combine the use of Gaussian mixture models, the EM algorithm and the Bayesian Information Criterion to accurately approximate distributions based on Monte Carlo data in a framework that allows for efficient Bayesian inference. We give detailed descriptions of each of these techniques, supporting their application by recent literature. One novelty of the GMM-DO filter lies in coupling these concepts with an efficient representation of the evolving probabilistic description of the uncertain dynamical field: the Dynamically Orthogonal field equations. By limiting our attention to a dominant evolving stochastic subspace of the total state space, we bridge an important gap previously identified in the literature caused by the dimensionality of the state space. We successfully apply the GMM-DO filter to two test cases: (1) the Double Well Diffusion Experiment and (2) the Sudden Expansion fluid flow. With the former, we prove the validity of utilizing Gaussian mixture models, the EM algorithm and the Bayesian Information Criterion in a dynamical systems setting. With the application of the GMM-DO filter to the two-dimensional Sudden Expansion fluid flow, we further show its applicability to realistic test cases of non-trivial dimensionality. The GMMDO filter is shown to consistently capture and retain the far-from-Gaussian statistics that arise, both prior and posterior to the assimilation of data, resulting in its superior performance over contemporary filters. We present the GMM-DO filter as an efficient, data-driven assimilation scheme, focused on a dominant evolving stochastic subspace of the total state space, that respects nonlinear dynamics and captures non-Gaussian statistics, obviating the use of heuristic arguments.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 177-180).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/68954
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.