MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Mechanical Engineering
  • Mechanical Engineering - Master's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Mechanical Engineering
  • Mechanical Engineering - Master's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dislocation density reduction in multicrystalline silicon through cyclic annealing

Author(s)
Vogl, Michelle (Michelle Lynn)
Thumbnail
DownloadFull printable version (11.04Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Tonio Buonassisi.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Multicrystalline silicon solar cells are an important renewable energy technology that have the potential to provide the world with much of its energy. While they are relatively inexpensive, their efficiency is limited by material defects, and in particular by dislocations. Reducing dislocation densities in multicrystalline silicon solar cells could greatly increase their efficiency while only marginally increasing their manufacturing cost, making solar energy much more affordable. Previous studies have shown that applying stress during high temperature annealing can reduce dislocation densities in multicrystalline silicon. One way to apply stress to blocks of silicon is through cyclic annealing. In this work, small blocks of multicrystalline silicon were subjected to thermal cycling at high temperatures. The stress levels induced by the thermal cycling were modeled using finite element analysis (FEA) on Abaqus CAE and compared to the dislocation density reductions observed in the lab. As too low of stress will have no effect on dislocation density reduction and too high of stress will cause dislocations to multiply, it is important to find the proper intermediate stress level for dislocation density reduction. By comparing the dislocation density reductions observed in the lab to the stress levels predicted by the FEA modeling, this intermediate stress level is determined.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 77-78).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/68956
Department
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Mechanical Engineering - Master's degree
  • Mechanical Engineering - Master's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.