MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • Artificial Intelligence Lab Publications
  • AI Technical Reports (1964 - 2004)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • Artificial Intelligence Lab Publications
  • AI Technical Reports (1964 - 2004)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reasoning from Incomplete Knowledge in a Procedural Deduction System

Author(s)
Moore, Robert Carter
Thumbnail
DownloadAITR-347.ps (10.08Mb)
Additional downloads
AITR-347.pdf (7.923Mb)
Metadata
Show full item record
Abstract
One very useful idea in AI research has been the notion of an explicit model of a problem situation. Procedural deduction languages, such as PLANNER, have been valuable tools for building these models. But PLANNER and its relatives are very limited in their ability to describe situations which are only partially specified. This thesis explores methods of increasing the ability of procedural deduction systems to deal with incomplete knowledge. The thesis examines in detail, problems involving negation, implication, disjunction, quantification, and equality. Control structure issues and the problem of modelling change under incomplete knowledge are also considered. Extensive comparisons are also made with systems for mechanica theorem proving.
Date issued
1975-12-01
URI
http://hdl.handle.net/1721.1/6898
Other identifiers
AITR-347
Series/Report no.
AITR-347

Collections
  • AI Technical Reports (1964 - 2004)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.