Show simple item record

dc.contributor.advisorEdmund Bertschinger.en_US
dc.contributor.authorSanderson, Robyn Ellynen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Physics.en_US
dc.date.accessioned2012-01-30T17:07:39Z
dc.date.available2012-01-30T17:07:39Z
dc.date.copyright2011en_US
dc.date.issued2011en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/68982
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2011.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 181-188).en_US
dc.description.abstractThe products of interactions between galaxies with a high mass ratio and low orbital angular momentum are studied. The interactions scatter the material from the smaller galaxy into structures with distinctive dynamics and morphology, including high local densities and a simple density profile related to properties of the participating galaxies. The role of the larger galaxy's tides in creating these structures and their relation to a well-studied class of mathematical objects motivates us to name them "tidal caustics". We study the densities achievable in tidal caustics for a typical merger of this type using an example from the Andromeda galaxy to determine whether they are sufficient to produce a detectable gamma-ray signal from self-interactions in the dark matter component, for likely particle models of dark matter. We find that the expected signal is an order of magnitude too low to be detected with current instruments. We also study the constraints that can be placed on the properties of the participating galaxies by observing the surface brightness profiles of the tidal caustics. We find that the local gravity and gravity gradient of the larger galaxy, and the energy spread and initial phase space density of the smaller galaxy, can be jointly constrained by fitting this profile. The constraints are degenerate but model-independent. We find that measurements of multiple caustics and the velocity of the material in each caustic along the line of sight give information about the orbital angular momentum and the deviations from spherical symmetry in the larger galaxy, though this information is somewhat model-dependent. We discuss the main technical difficulty in fitting the surface brightness profile: determining the inclination angle of the caustic. We demonstrate that a simple model can successfully recover the necessary parameters for some cases, and that a simple modification to this model will improve its success rate.en_US
dc.description.statementofresponsibilityby Robyn Ellyn Sanderson.en_US
dc.format.extent188 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectPhysics.en_US
dc.titleUnderstanding dark matter halos with tidal causticsen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physics
dc.identifier.oclc774033987en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record