MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • Artificial Intelligence Lab Publications
  • AI Technical Reports (1964 - 2004)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • Artificial Intelligence Lab Publications
  • AI Technical Reports (1964 - 2004)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Compliance and Force Control for Computer Controlled Manipulators

Author(s)
Mason, Matthew Thomas
Thumbnail
DownloadAITR-515.ps (4.517Mb)
Additional downloads
AITR-515.pdf (3.142Mb)
Metadata
Show full item record
Abstract
Compliant motion occurs when the manipulator position is constrained by the task geometry. Compliant motion may be produced either by a passive mechanical compliance built in to the manipulator, or by an active compliance implemented in the control servo loop. The second method, called force control, is the subject of this report. In particular, this report presents a theory of force control based on formal models of the manipulator, and the task geometry. The ideal effector is used to model the manipulator, and the task geometry is modeled by the ideal surface, which is the locus of all positions accessible to the ideal effector. Models are also defined for the goal trajectory, position control, and force control.
Date issued
1979-04-01
URI
http://hdl.handle.net/1721.1/6908
Other identifiers
AITR-515
Series/Report no.
AITR-515

Collections
  • AI Technical Reports (1964 - 2004)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.