Kinetic processes of mantle minerals
Author(s)
Koga, Kenneth Tadao, 1969-
DownloadFull printable version (13.73Mb)
Other Contributors
Woods Hole Oceanographic Institution.
Advisor
Nobumichi Shimizu and Timothy L. Grove.
Terms of use
Metadata
Show full item recordAbstract
This dissertation discusses the experimental results designed to constrain the processes of MORB generation. The main focus of this study is to investigate the location and the related processes of the transformation boundary from spinel to garnet peridotite facies at subsolidus conditions, because the presence of garnet in melting residues has significant influence to the conclusion drawn from geochemical/geophysical observations. Using an approach that monitors the rate of reaction progresses, the experimental results confirmed the presence of a region that garnet and spinel coexist in peridotite compositions. The trace element distribution among the product phases (opx and cpx) subsequent to the garnet breakdown reaction is in disequilibrium, due to the differences of diffusivity between major and trace elements. The presence of disequilibrium distribution in nature may be used to infer time scales of geodynamic processes. Diffusion coefficients of Al in diopside are experimentally determined, and used for modeling the equilibration of major elements in pyroxene during MORB genesis. In summary, this dissertation contributes two major inferences: the location of the transformation boundaries of the garnet-spinel peridotite; the presence of disequilibrium trace elements distribution with equilibrium major elements distribution in mantle pyroxenes.
Description
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), February 2000. "September 1999." Includes bibliographical references.
Date issued
2000Department
Joint Program in Oceanography; Woods Hole Oceanographic Institution; Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary SciencesPublisher
Massachusetts Institute of Technology
Keywords
Joint Program in Oceanography., Earth, Atmospheric, and Planetary Sciences., Woods Hole Oceanographic Institution.