MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Current velocity profiling from an autonomous underwater vehicle with the application of Kalman filtering

Author(s)
Zhang, Yanwu
Thumbnail
DownloadFull printable version (10.23Mb)
Other Contributors
Woods Hole Oceanographic Institution.
Advisor
James G. Bellingham and Arthur B. Baggeroer.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The thesis presents data processing schemes for extracting Earth-referenced current velocity from relative current velocity measurement made by an Acoustic Doppler Current Profiler (ADCP) borne by an Autonomous Underwater Vehicle (AUV). Compared with conventional approaches, current profiling from an AUV platform has advantages including three-dimensional mobility, rapid response, high-level intelligent control, independence from ship motion and weather constraint, and shallow water operation. First, an acausal postprocessing scheme is presented for estimating the AUV's own velocity and removing it from the relative velocity measurement to obtain the true current velocity. Then, a causal scheme for estimating the Earth-referenced current velocity is presented. The causal algorithm is based on an Extended Kalman Filter (EKF) that utilizes the hydrodynamics connecting current velocity to vehicle's motion. In both methods, the raw ADCP measurement is corrected to achieve more accurate current velocity estimate. Field data from the Haro Strait Tidal Front Experiment are processed by both methods. Current velocity estimation results reveal horizontal and vertical velocity structure of the tidal mixing process, and are also consistent with the vehicle's deviated trajectory. The capability of the AUV-borne current profiling system is thus demonstrated.
Description
Thesis (S.M. in Oceanographic Engineering)--Joint Program in Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Ocean Engineering; and the Woods Hole Oceanographic Institution); and, (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998.
 
Includes bibliographical references (leaves 74-78).
 
Date issued
1998
URI
http://hdl.handle.net/1721.1/69202
Department
Joint Program in Applied Ocean Physics and Engineering; Woods Hole Oceanographic Institution; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Department of Ocean Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Joint Program in Applied Ocean Science and Engineering., Ocean Engineering., Woods Hole Oceanographic Institution.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.