MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Late Holocene hurricane activity and climate variability in the Northeastern Gulf of Mexico

Author(s)
Lane, Daniel Philip
Thumbnail
DownloadFull printable version (91.94Mb)
Other Contributors
Woods Hole Oceanographic Institution.
Advisor
Jeffrey P. Donnelly and Kerry A. Emanuel.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Hurricane activity in the Northeastern Gulf of Mexico and its relationship to regional and large-scale climate variability during the Late Holocene is explored. A 4500-year record of hurricane-induced storm surges is developed from sediment cores collected from a coastal sinkhole near Apalachee Bay, Florida. Reconstructed hurricane frequency is shown to exhibit statistically significant variability with the greatest activity occurring between 2700 and 2400 years ago and the least activity between 1900 to 1600 years ago and after 600 years ago. Proxy records of storm-relevant climate variables contain similar timescales of variability and suggest both regional and large-scale mechanisms have influenced hurricane activity on centennial to millennial timescales. In particular, low-frequency migrations of the Loop Current may exercise control over regional hurricane activity by changing the thermal structure of the upper ocean and influencing the role of storm-induced upwelling on hurricane intensification. A new method for estimating the frequency of hurricane-generated storm surges is presented and applied to Apalachee Bay, Florida. Multisite paleohurricane reconstructions from this region are developed, and the effects of geographic boundary conditions and temporal resolution on estimates of paleohurricane frequency are explored.
Description
Thesis (Ph. D. in Geology and Geophysics)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2011.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references.
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/69237
Department
Joint Program in Oceanography; Woods Hole Oceanographic Institution; Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Publisher
Massachusetts Institute of Technology
Keywords
Joint Program in Oceanography., Earth, Atmospheric, and Planetary Sciences., Woods Hole Oceanographic Institution.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.