Multiscale CFD simulations of entrained flow gasification
Author(s)
Kumar, Mayank, Ph. D. Massachusetts Institute of Technology
DownloadFull printable version (31.50Mb)
Alternative title
Multiscale computational fluid dynamics simulations of entrained flow gasification
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Ahmed Ghoniem.
Terms of use
Metadata
Show full item recordAbstract
The design of entrained flow gasifiers and their operation has largely been an experience based enterprise. Most, if not all, industrial scale gasifiers were designed before it was practical to apply CFD models. Moreover, gasification CFD models developed over the years may have lacked accuracy or have not been tested over a wide range of operating conditions, gasifier geometries and feedstock compositions. One reason behind this shortcoming is the failure to incorporate detailed physics and chemistry of the coupled non-linear phenomena occurring during solid fuel gasification. In order to accurately predict some of the overall metrics of gasifier performance, like fuel conversion and syngas composition, we need to first gain confidence in the sub-models of the various physical and chemical processes in the gasifier. Moreover, in a multiphysics problem like gasification modeling, one needs to balance the effort expended in any one submodel with its effect on the accuracy of predicting some key output parameters. Focusing on these considerations, a multiscale CFD gasification model is constructed in this work with special emphasis on the development and validation of key submodels including turbulence, particle turbulent dispersion and char consumption models. The integrated model is validated with experimental data from various pilot-scale and laboratory-scale gasifier designs, further building confidence in the predictive capability of the model. Finally, the validated model is applied to ascertain the impact of changing the values of key operating parameters on the performance of the MHI and GE gasifiers. The model is demonstrated to provide useful quantitative estimates of the expected gain or loss in overall carbon conversion when critical operating parameters such as feedstock grinding size, gasifier mass throughput and pressure are varied.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2011. Cataloged from PDF version of thesis. Includes bibliographical references.
Date issued
2011Department
Massachusetts Institute of Technology. Department of Mechanical EngineeringPublisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.