MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • Artificial Intelligence Lab Publications
  • AI Technical Reports (1964 - 2004)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • Artificial Intelligence Lab Publications
  • AI Technical Reports (1964 - 2004)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Justified Generalization: Acquiring Procedures from Examples

Author(s)
Andreae, Peter Merrett
Thumbnail
DownloadAITR-834.ps (20.81Mb)
Additional downloads
AITR-834.pdf (7.874Mb)
Metadata
Show full item record
Abstract
This thesis describes an implemented system called NODDY for acquiring procedures from examples presented by a teacher. Acquiring procedures form examples involves several different generalization tasks. Generalization is an underconstrained task, and the main issue of machine learning is how to deal with this underconstraint. The thesis presents two principles for constraining generalization on which NODDY is based. The first principle is to exploit domain based constraints. NODDY demonstrated how such constraints can be used both to reduce the space of possible generalizations to manageable size, and how to generate negative examples out of positive examples to further constrain the generalization. The second principle is to avoid spurious generalizations by requiring justification before adopting a generalization. NODDY demonstrates several different ways of justifying a generalization and proposes a way of ordering and searching a space of candidate generalizations based on how much evidence would be required to justify each generalization. Acquiring procedures also involves three types of constructive generalizations: inferring loops (a kind of group), inferring complex relations and state variables, and inferring predicates. NODDY demonstrates three constructive generalization methods for these kinds of generalization.
Date issued
1985-01-01
URI
http://hdl.handle.net/1721.1/6950
Other identifiers
AITR-834
Series/Report no.
AITR-834

Collections
  • AI Technical Reports (1964 - 2004)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.