MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the Acid-Base Mechanism for Ruthenium Water Oxidation Catalysts

Author(s)
Wang, Lee-Ping; Wu, Qin; Van Voorhis, Troy
Thumbnail
DownloadWangVanVoorhis10a.pdf (2.690Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Alternative title
Acid-Base Mechanism for Ruthenium Water Oxidation Catalysts
Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We present a detailed theoretical study of the pathway for water oxidation in synthetic ruthenium-based catalysts. As a first step, we consider a recently discovered single center catalyst, where experimental observations suggest a purely single-center mechanism. We find low activation energies (<5 kcal/mol) for each rearrangement in the catalytic cycle. In the crucial step of O−O bond formation, a solvent water acts as a Lewis base and attacks a highly oxidized RuV=O. Armed with the structures and energetics of the single-center catalyst, we proceed to consider a representative Ru-dimer which was designed to form O2 via coupling between the two centers. We discover a mechanism that proceeds in analogous fashion to the monomer case, with all the most significant steps occurring at a single catalytic center within the dimer. This acid−base mechanism suggests a new set of strategies for the rational design of multicenter catalysts: rather than coordinating the relative orientations of the subunits, one can focus on coordinating solvation-shell water molecules or tuning redox potentials.
Date issued
2010-04
URI
http://hdl.handle.net/1721.1/69558
Department
Massachusetts Institute of Technology. Department of Chemistry
Journal
Inorganic Chemistry
Publisher
American Chemical Society
Citation
Wang, Lee-Ping, Qin Wu, and Troy Van Voorhis. “Acid−Base Mechanism for Ruthenium Water Oxidation Catalysts.” Inorganic Chemistry 49.10 (2010): 4543–4553.
Version: Author's final manuscript
ISSN
0020-1669
1520-510X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.