MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reducing recombination in organic photovoltaics

Author(s)
Sussman, Jason M. (Jason Michael)
Thumbnail
DownloadFull printable version (2.731Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Materials Science and Engineering.
Advisor
Marc A. Baldo.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, I consider two methods to improve organic photovoltaic efficiency: energy level cascades and promotion of triplet state excitons. The former relies on a thin layer of material placed between the active layers of a photovoltaic device to destabilize excitons. If the interfacial material is chosen properly, it can significantly improve device performance. The second method proposes to use quantum mechanical rules to reduce the rate of loss in organic photovoltaic devices. An electron in a triplet state cannot directly drop to the ground state by emitting a photon, so triplet excitons have longer lifetimes, and are thus more likely to diffuse to an interface to be dissociated. But this work suggests that, once they are at the interface, they are less likely to be dissociated than a singlet.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2011.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 55-65).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/69673
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Materials Science and Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.