| dc.contributor.advisor | James H. Williams Jr. | en_US |
| dc.contributor.author | Gonzales, Phillip David | en_US |
| dc.contributor.other | Massachusetts Institute of Technology. Dept. of Mechanical Engineering. | en_US |
| dc.date.accessioned | 2012-03-16T16:02:20Z | |
| dc.date.available | 2012-03-16T16:02:20Z | |
| dc.date.copyright | 2011 | en_US |
| dc.date.issued | 2011 | en_US |
| dc.identifier.uri | http://hdl.handle.net/1721.1/69775 | |
| dc.description | Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2011. | en_US |
| dc.description | Cataloged from PDF version of thesis. | en_US |
| dc.description | Includes bibliographical references (p. 28-30). | en_US |
| dc.description.abstract | The aim of this paper is to perform a review of Biomimicry as a science today in environmental, engineering, and manufacturing fields, as well as to educate readers on the history of Biomimicry as a whole and how it is studied. As more evidence surfaces about the effect of our presence on the Earth, the scientific community is faced with the challenge of solving these problems. After introducing these concepts, an in-depth review of two of the most studied topics in biomimicry is conducted: how the lotus remains clean in a dirty swamp and how the gecko can stick to any surface. These two topics are taken from the classical beliefs on how they work and leads them through into today's world, focusing on how the mechanisms behind them were discovered. Both sections end with a review of current applications of the technologies that have been developed by studying these living organisms. Everything is wrapped up with a discussion of why we must continue to study biomimicry and apply its principles to our engineering and production practices. | en_US |
| dc.description.statementofresponsibility | by Phillip David Gonzales. | en_US |
| dc.format.extent | 30 p. | en_US |
| dc.language.iso | eng | en_US |
| dc.publisher | Massachusetts Institute of Technology | en_US |
| dc.rights | M.I.T. theses are protected by
copyright. They may be viewed from this source for any purpose, but
reproduction or distribution in any format is prohibited without written
permission. See provided URL for inquiries about permission. | en_US |
| dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
| dc.subject | Mechanical Engineering. | en_US |
| dc.title | The evolution of ideas in biomimicry | en_US |
| dc.type | Thesis | en_US |
| dc.description.degree | S.B. | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Mechanical Engineering | |
| dc.identifier.oclc | 776192011 | en_US |