Evaluation of polyelectrolyte multilayer thin-film coated microneedle arrays for transcutaneous vaccine delivery
Author(s)
Fung, Peter W. (Peter Waitak)
DownloadFull printable version (1.201Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Materials Science and Engineering.
Advisor
Darrell J. Irvine.
Terms of use
Metadata
Show full item recordAbstract
The skin is an ideal organ for the safe and convenient delivery of vaccines, small molecules, and other biologics. Members of the Irvine and Hammond groups have developed a polyelectrolyte multilayer thin film-coated microneedle platform that can achieve simultaneous DNA and nanoparticle delivery. This delivery platform has the advantage of direct delivery of DNA or polymer nanoparticles to immune-active cells at the interface between the dermis and epidermis, enhancing uptake of the delivered cargo by resident immune cells. Ideal for the delivery of DNA vaccines, this platform aims to bridge the gap in the lack of efficient delivery platforms hampering the effectiveness of DNA vaccines. The ability to co-deliver polymer nanoparticles can serve as a conduit for delivering immune stimulating adjuvants or other drugs for therapeutic applications. An overview of current vaccine and delivery system research is presented. Market factors for the commercialization of the polyelectrolyte multilayer thin film-coated microneedle delivery platform are considered along with the risk factors in bringing this invention to market. An assessment of the intellectual property surrounding the platform is performed and a preliminary market entry strategy is developed for minimizing the risks commercialization.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2011. Cataloged from PDF version of thesis. Includes bibliographical references (p. 43-46).
Date issued
2011Department
Massachusetts Institute of Technology. Department of Materials Science and EngineeringPublisher
Massachusetts Institute of Technology
Keywords
Materials Science and Engineering.