Fabrication and heating rate study of microscopic surface electrode ion traps
Author(s)
Daniilidis, N.; Narayanan, Siddharth Madhavan; Moller, S. A.; Clark, R.; Lee, T. E.; Leek, P. J.; Wallraff, A.; Schulz, Stephan Alf; Schmidt-Kaler, F.; Haffner, H.; ... Show more Show less
DownloadDaniilidis-2011-Fabrication and heating rate study of microscopic surface electrode ion traps.pdf (829.1Kb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
We report heating rate measurements in a microfabricated gold-on-sapphire surface electrode ion trap with a trapping height of approximately 240 μm. Using the Doppler recooling method, we characterize the trap heating rates over an extended region of the trap. The noise spectral density of the trap falls in the range of noise spectra reported in ion traps at room temperature. We find that during the first months of operation, the heating rates increase by approximately one order of magnitude. The increase in heating rates is largest in the ion-loading region of the trap, providing a strong hint that surface contamination plays a major role for excessive heating rates. We discuss data found in the literature and the possible relation of anomalous heating to sources of noise and dissipation in other systems, namely impurity atoms adsorbed onto metal surfaces and amorphous dielectrics.
Date issued
2011-01Department
MIT-Harvard Center for Ultracold AtomsJournal
New Journal of Physics
Publisher
Institute of Physics Publishing
Citation
Daniilidis, N et al. “Fabrication and Heating Rate Study of Microscopic Surface Electrode Ion Traps.” New Journal of Physics 13.1 (2011): 013032. Web.
Version: Final published version
ISSN
1367-2630