MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Designing aesthetically pleasing freeform surfaces in a computer environment

Author(s)
Smyth, Evan P. (Evan Patrick), 1967-
Thumbnail
DownloadFull printable version (27.52Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Architecture.
Advisor
William J. Mitchell.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Statement: If computational tools are to be employed in the aesthetic design of freeform surfaces, these tools must better reflect the ways in which creative designers conceive of and develop such shapes. In this thesis, I studied the design of aesthetically constrained freeform surfaces in architecture and industrial design, formulated a requirements list for a computational system that would aid in the creative design of such surfaces, and implemented a subset of the tools that would comprise such a system. This work documents the clay modeling process at BMW AG., Munich. The study of that process has led to a list of tools that would make freeform surface modeling possible in a computer environment. And finally, three tools from this system specification have been developed into a proof-of-concept system. Two of these tools are sweep modification tools and the third allows a user to modify a surface by sketching a shading pattern desired for the surface. The proof-of-concept tools were necessary in order to test the validity of the tools being presented and they have been used to create a number of example objects. The underlying surface representation is a variational expression which is minimized using the finite element method over an irregular triangulated mesh.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Architecture, February 2001.
 
Includes bibliographical references (p. 151-160).
 
Date issued
2001
URI
http://hdl.handle.net/1721.1/70339
Department
Massachusetts Institute of Technology. Department of Architecture
Publisher
Massachusetts Institute of Technology
Keywords
Architecture.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.