Show simple item record

dc.contributor.advisorMarilyne Andersen and Leon Glicksman.en_US
dc.contributor.authorDave, Shreya Hen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Mechanical Engineering.en_US
dc.date.accessioned2012-04-26T18:51:25Z
dc.date.available2012-04-26T18:51:25Z
dc.date.copyright2012en_US
dc.date.issued2012en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/70416
dc.descriptionThesis (S.M. in Technology and Policy)--Massachusetts Institute of Technology, Engineering Systems Division, Technology and Policy Program; and, (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 143-148).en_US
dc.description.abstractBuildings account for over 40% of the energy consumption in the United States, nearly 40% of which is attributed to lighting. The selection of a fenestration system for a building is a critical decision as it offsets electric lighting use as well as impacts energy performance through heating and cooling systems. Further, the fenestration system contributes to both occupant comfort and ambiance of the space. Complex Fenestration Systems (CFS) address these factors with a variety of innovative technologies but the language to describe, discuss, and compare them does not exist. Existing traditional metrics for fenestration systems are unable to reveal the benefits that characterize complex fenestration systems because they are rigid, do not reflect annual performance, and were developed for a different purpose. The framework presented in this research offers a solution to this problem by using an annual climate-based methodology to provide a comprehensive evaluation of a system by incorporating three of the most relevant performance aspects: energy efficiency, occupant visual comfort, and ability to view through. Three metrics, the Relative Energy Impact (REI), the Extent of Comfortable Daylight (ECD), and the View Through Potential (VTP), were derived from these three criteria to express, in relative terms, a fagade's contribution to building energy use, comfortable daylight conditions, and the degree of transparency, respectively. Several practical matters were considered when developing a policy-relevant set of metrics, including both ease of calculation for manufacturers and usability for consumers. As such, the calculation methodology evolved from its initial proposal into a simplified approach, analytical where possible, and into a label-like concept for visual representation. These metrics are intended to exist as a mechanism by which manufacturers can evaluate and compare facade systems, provide high-level intuition of relative performance for designers and contractors, and enable the balance of performance objectives based on user preference. Ultimately, the creation of this comprehensive language is intended to stimulate innovation in fenestration systems and encourage their use in both new and retrofit building applications.en_US
dc.description.statementofresponsibilityby Shreya H. Dave.en_US
dc.format.extent148 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectEngineering Systems Division.en_US
dc.subjectTechnology and Policy Program.en_US
dc.subjectMechanical Engineering.en_US
dc.titleComprehensive performance metrics for Complex Fenestration Systems using a relative approachen_US
dc.title.alternativeComprehensive performance metrics for CFS using a relative approachen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.description.degreeS.M.in Technology and Policyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.contributor.departmentMassachusetts Institute of Technology. Engineering Systems Division
dc.identifier.oclc785146257en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record