Show simple item record

dc.contributor.advisorRuben Juanes.en_US
dc.contributor.authorMacMinn, Christopher Williamen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Mechanical Engineering.en_US
dc.coverage.spatialn-usc--en_US
dc.date.accessioned2012-04-26T18:51:59Z
dc.date.available2012-04-26T18:51:59Z
dc.date.copyright2012en_US
dc.date.issued2012en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/70422
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 123-128).en_US
dc.description.abstractMitigation of climate change requires a reduction in atmospheric carbon dioxide (C0 2) emissions. One promising tool for achieving this is the large-scale injection of CO2 into deep saline aquifers. After injection, upward leakage of the CO2 is a primary concern because it will be buoyant relative to the ambient groundwater and, as a result, will rise toward the top of the aquifer and may migrate laterally away from the injection site. To assess leakage risks and estimate aquifer capacity requires an accurate understanding of the subsurface migration and trapping of the buoyant C0 2; however, many aspects of the fundamental physics of CO 2 migration and trapping are not fully understood, and traditional reservoir-simulation tools are currently unable to resolve the impact of small-scale trapping processes on these large-scale fluid flows. In this Thesis, we develop a simple gravity-current model for the post-injection migration and trapping of a buoyant plume of CO2 in a confined, sloping saline aquifer with a natural groundwater through-flow. We include both residual trapping, where small blobs of CO 2 are immobilized by capillarity along the trailing edge of the plume, and solubility trapping driven by convective dissolution, where CO2 dissolves into the groundwater and sinks downward in dense, C0 2-rich fingers. Although idealized, this model offers physical insight into the processes controlling CO 2 migration and trapping, and is not limited by computational resources. We derive solutions to the model in several limiting cases, and we use these solutions to study the interplay between slope and groundwater flow, and the competition between residual and solubility trapping. We validate the model against laboratory analog experiments, finding good agreement between the experimental results and the predictions of the model. We then use the experiments to study the small-scale dynamics of the convective-dissolution instability: the formation, descent, and coarsening of the fingers. Finally, we use the model to study the migration and trapping of CO 2 in the Mt. Simon Sandstone, a large deep saline aquifer in the Midwestern United States that is considered to be a promising candidate for geological CO 2 storage.en_US
dc.description.statementofresponsibilityby Christopher William MacMinn.en_US
dc.format.extent128 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleMigration and trapping of CO₂ in saline aquifersen_US
dc.title.alternativeMigration and trapping of carbon dioxide in saline aquifersen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc785184061en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record