Show simple item record

dc.contributor.advisorH. Harry Asada.en_US
dc.contributor.authorBarragán, Patrick Ren_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2012-04-27T17:39:35Z
dc.date.available2012-04-27T17:39:35Z
dc.date.copyright2012en_US
dc.date.issued2012en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/70462
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and, (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 81-82).en_US
dc.description.abstractThe PZT cellular actuator developed in the MIT d'Arbeloff Laboratory utilizes small-strain, high-force PZT stack actuators in a mechanical flexure system to produce a larger-strain, lower-force actuator useful in robotic systems. Many functionalities for these cellular actuators are developed which can have great impact on robotic systems and actuation itself. After initial exploration into other possible circuitry, a circuit is designed to recovery unused energy for the PZT cells. The circuit design is formed around a proposed method of distributed actuation using PZT cells which imposes that different PZT cells will be activated during different periods such that the charge from some cells can be transferred to others. If the application allows actuation which can conform to this criteria, the developed circuit can be used which, without optimization, can save ~41% of the energy used to drive the actuators with a theoretical upper limit on energy efficiency of 100%. A dynamic system consisting of multiple PZT actuators driving a linear gear is analyzed and simulated which can achieve a no load speed 2.4 m/s with minimal actuators. Then, the two-way transforming properties of PZT stack actuators are utilized to allow dual sensing and actuation. This method uses an inactive PZT cell as a sensor. With no additional sensors, a pendulum system driven by antagonistic groups of PZT cells is shown to find its own resonance with no system model. These functionalities of charge recovery, distributed actuation, and dual sensing and actuation set the PZT cellular actuator as an important contribution to robotic actuation and begin to illuminate the possible impacts of the concept. The design and analysis described reveals many possibilities for future applications and developments using the PZT cellular actuator in the fields of actuation and robotics.en_US
dc.description.statementofresponsibilityby Patrick R. Barragánen_US
dc.format.extent82 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleAn efficient drive, sensing, and actuation system using PZT stack actuator cellsen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc785723345en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record