MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards a non-relativistic holographic superfluid

Author(s)
Adams, Allan; Wang, Juven
Thumbnail
DownloadAdams-2011-Towards a non-relativistic holographic superfluid.pdf (734.1Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 3.0 http://creativecommons.org/licenses/by/3.0/
Metadata
Show full item record
Abstract
We explore the phase structure of a holographic toy model of superfluid states in non-relativistic conformal field theories. At low background mass density, we found a familiar second-order transition to a superfluid phase at finite temperature. Increasing the chemical potential for the probe charge density drives this transition strongly first order as the low-temperature superfluid phase merges with a thermodynamically disfavored high-temperature condensed phase. At high background mass density, the system re-enters the normal phase as the temperature is lowered further, hinting at a zero-temperature quantum phase transition as the background density is varied. Given the unusual thermodynamics of the background black hole, however, it seems likely that the true ground state is another configuration altogether.
Date issued
2011-11
URI
http://hdl.handle.net/1721.1/70533
Department
Massachusetts Institute of Technology. Center for Theoretical Physics; Massachusetts Institute of Technology. Department of Physics
Journal
New Journal of Physics
Publisher
Institute of Physics Publishing
Citation
Adams, Allan, and Juven Wang. “Towards a Non-relativistic Holographic Superfluid.” New Journal of Physics 13.11 (2011): 115008. Web.
Version: Final published version
ISSN
1367-2630

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.