MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • Artificial Intelligence Lab Publications
  • AI Technical Reports (1964 - 2004)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • Artificial Intelligence Lab Publications
  • AI Technical Reports (1964 - 2004)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Informational Complexity of Learning from Examples

Author(s)
Niyogi, Partha
Thumbnail
DownloadAITR-1587.ps (3.109Mb)
Additional downloads
AITR-1587.pdf (3.177Mb)
Metadata
Show full item record
Abstract
This thesis attempts to quantify the amount of information needed to learn certain tasks. The tasks chosen vary from learning functions in a Sobolev space using radial basis function networks to learning grammars in the principles and parameters framework of modern linguistic theory. These problems are analyzed from the perspective of computational learning theory and certain unifying perspectives emerge.
Date issued
1996-09-01
URI
http://hdl.handle.net/1721.1/7069
Other identifiers
AITR-1587
Series/Report no.
AITR-1587

Collections
  • AI Technical Reports (1964 - 2004)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.