Show simple item record

dc.contributor.advisorNancy Leveson.en_US
dc.contributor.authorAbdymomunov, Azamaten_US
dc.contributor.otherSystem Design and Management Program.en_US
dc.coverage.spatialme-----en_US
dc.date.accessioned2012-05-15T21:13:01Z
dc.date.available2012-05-15T21:13:01Z
dc.date.copyright2011en_US
dc.date.issued2011en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/70794
dc.descriptionThesis (S.M. in Engineering and Management)--Massachusetts Institute of Technology, Engineering Systems Division, System Design and Management Program, 2011.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 91-93).en_US
dc.description.abstractThe political transformation and transition of post-Soviet societies have led to hybrid structures in political, economic and technological domains. In such hybrid structures the roles of government, state enterprise, private business and civil society are not clearly defined. These roles shift depending on formal and informal interests, availability and competition for limited resources, direct and indirect financial benefits, internal and external agendas. In an abstract sense, a hybrid is "anything derived from heterogeneous sources, or composed of elements of different or incongruous kinds" (Hybrid). If transition is a process from one state to another, hybrid is a state unto itself. In the context of this thesis Hybrid Socio-Technical Environment means the co-existence of different institutions and policies, state and private business entities, old and new technologies, managerial models and practices of planning and market economies, collectivist and individualist value systems. Rapid technological progress, coupled with shifts in political and economic structures, may produce long-lasting disturbances in a society. Such disturbances are result of the hybrid society's contradictory nature. Some of these disturbances appear in the form of large-scale systemic accidents, such as the Sayano-Shushenskaya Hydroelectric Power Station accident. The rigid and outdated Soviet socio-technical system was broken down into multiple independent systems and subsystems to increase operational flexibility, with very limited capital investment. A twenty-year transition period (1990-2010), proved the survivability of the Soviet system, which was able to perform its primary functions even with partial capacity. However, recent large-scale accidents are clear signs that the system is stretching beyond its limits. Changes in the socio-technical landscape (multiple stakeholders and variety of interests) suggest that the traditional approaches of Reliability Theory, with its inward focus, may not be an effective tool in identifying emerging challenges. The outward-focused System theory approach takes into consideration key characteristics of the changing hybrid socio-technical landscape, as well as motivations of multiple stakeholders. The research concludes that insufficient capital investment and backlog in maintenance shifts are key systemic factors that allow migration of organizational behavior from a safe to an unsafe state. Additional analysis has to be conducted to prove this conclusion.en_US
dc.description.statementofresponsibilityby Azamat Abdymomunov.en_US
dc.format.extent93 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectEngineering Systems Division.en_US
dc.subjectSystem Design and Management Program.en_US
dc.titleApplication of system safety framework in hybrid socio-technical environment of Eurasiaen_US
dc.typeThesisen_US
dc.description.degreeS.M.in Engineering and Managementen_US
dc.contributor.departmentSystem Design and Management Program.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Engineering Systems Division
dc.identifier.oclc792861134en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record