MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Auditory task-dependent control of human cochlear responses to sound

Author(s)
Francis, Nikolas A. (Nikolas Alejandro)
Thumbnail
DownloadFull printable version (6.523Mb)
Other Contributors
Harvard--MIT Program in Health Sciences and Technology.
Advisor
John J. Guinan, Jr.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Accurate sensory perception in noisy environments requires physiological mechanisms that reduce sensory interference. In the auditory system, it has been hypothesized that attentional control of cochlear responses to sound facilitates listening in noisy environments by modulating the effects of medial olivocochlear (MOC) efferent activity in the cochlea. However, conclusive support for this hypothesis has been elusive over the past 50 years. We investigated this issue using a novel experimental paradigm in which human subjects performed auditory tasks on transient sounds presented in acoustic noise, while we recorded click-evoked otoacoustic emissions (CEOAEs) in the task ear. CEOAEs are low-level sounds that are generated in the cochlea, recorded in the ear-canal and provide a non-invasive measure of the MOC effects on cochlear mechanical responses to sound. Our results show clear evidence that attending to transient sounds in noise caused an increase in MOC activity during the auditory task. MOC activity was greater on trials with correct responses compared to trials with incorrect responses, which provides evidence that the MOC activity brought about a perceptually beneficial change in cochlear operation. In addition, the task-dependent MOC activity scaled with auditory task difficulty and varied with task instructions. These results indicate the existence of a dynamic task-dependent interaction between the cochlea and the brain that has the function of optimizing cochlear operation to enhance auditory perceptual accuracy in noisy acoustic environments.
Description
Thesis (Ph. D.)--Harvard-MIT Program in Health Sciences and Technology, 2012.
 
Vita. Cataloged from PDF version of thesis.
 
Includes bibliographical references.
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/70814
Department
Harvard University--MIT Division of Health Sciences and Technology
Publisher
Massachusetts Institute of Technology
Keywords
Harvard--MIT Program in Health Sciences and Technology.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.