Show simple item record

dc.contributor.authorHowe, Mark William
dc.contributor.authorAtallah, Hicham
dc.contributor.authorMcCool, Andrew D.
dc.contributor.authorGibson, Daniel J.
dc.contributor.authorGraybiel, Ann M.
dc.date.accessioned2012-05-24T15:34:06Z
dc.date.available2012-05-24T15:34:06Z
dc.date.issued2011-10
dc.date.submitted2011-08
dc.identifier.issn0027-8424
dc.identifier.issn1091-6490
dc.identifier.urihttp://hdl.handle.net/1721.1/70923
dc.description.abstractRhythmic brain activity is thought to reflect, and to help organize, spike activity in populations of neurons during on-going behavior. We report that during learning, a major transition occurs in task-related oscillatory activity in the ventromedial striatum, a striatal region related to motivation-dependent learning. Early on as rats learned a T-maze task, bursts of 70- to 90-Hz high-γ activity were prominent during T-maze runs, but these gradually receded as bursts of 15- to 28-Hz β-band activity became pronounced. Populations of simultaneously recorded neurons synchronized their spike firing similarly during both the high-γ–band and β-band bursts. Thus, the structure of spike firing was reorganized during learning in relation to different rhythms. Spiking was concentrated around the troughs of the β-oscillations for fast-spiking interneurons and around the peaks for projection neurons, indicating alternating periods of firing at different frequencies as learning progressed. Spike-field synchrony was primarily local during high-γ–bursts but was widespread during β-bursts. The learning-related shift in the probability of high-γ and β-bursting thus could reflect a transition from a mainly focal rhythmic inhibition during early phases of learning to a more distributed mode of rhythmic inhibition as learning continues and behavior becomes habitual. These dynamics could underlie changing functions of the ventromedial striatum during habit formation. More generally, our findings suggest that coordinated changes in the spatiotemporal relationships of local field potential oscillations and spike activity could be hallmarks of the learning process.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant R01 MH060379)en_US
dc.description.sponsorshipMark Gorenberg Graduate Student Fellowship Awarden_US
dc.language.isoen_US
dc.publisherNational Academy of Sciences (U.S.)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1073/pnas.1113158108en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcePNASen_US
dc.titleHabit learning is associated with major shifts in frequencies of oscillatory activity and synchronized spike firing in striatumen_US
dc.typeArticleen_US
dc.identifier.citationHowe, M. W. et al. “Habit Learning Is Associated with Major Shifts in Frequencies of Oscillatory Activity and Synchronized Spike Firing in Striatum.” Proceedings of the National Academy of Sciences 108.40 (2011): 16801–16806. Web.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentMcGovern Institute for Brain Research at MITen_US
dc.contributor.approverGraybiel, Ann M.
dc.contributor.mitauthorGraybiel, Ann M.
dc.contributor.mitauthorHowe, Mark William
dc.contributor.mitauthorAtallah, Hicham
dc.contributor.mitauthorMcCool, Andrew D.
dc.contributor.mitauthorGibson, Daniel J.
dc.relation.journalProceedings of the National Academy of Sciences of the United States of Americaen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsHowe, M. W.; Atallah, H. E.; McCool, A.; Gibson, D. J.; Graybiel, A. M.en
dc.identifier.orcidhttps://orcid.org/0000-0002-4326-7720
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record