MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Motor Mechanism for Protein Threading through Hsp104

Author(s)
Wendler, Petra; Shorter, James; Snead, David; Plisson, Celia; Clare, Daniel K.; Saibil, Helen R.; Lindquist, Susan; ... Show more Show less
Thumbnail
DownloadWendler-2009-Motor Mechanism for Protein Threading through Hsp104.pdf (2.084Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The protein-remodeling machine Hsp104 dissolves amorphous aggregates as well as ordered amyloid assemblies such as yeast prions. Force generation originates from a tandem AAA+ (ATPases associated with various cellular activities) cassette, but the mechanism and allostery of this action remain to be established. Our cryoelectron microscopy maps of Hsp104 hexamers reveal substantial domain movements upon ATP binding and hydrolysis in the first nucleotide-binding domain (NBD1). Fitting atomic models of Hsp104 domains to the EM density maps plus supporting biochemical measurements show how the domain movements displace sites bearing the substrate-binding tyrosine loops. This provides the structural basis for N- to C-terminal substrate threading through the central cavity, enabling a clockwise handover of substrate in the NBD1 ring and coordinated substrate binding between NBD1 and NBD2. Asymmetric reconstructions of Hsp104 in the presence of ATPγS or ATP support sequential rather than concerted ATP hydrolysis in the NBD1 ring.
Date issued
2009-04
URI
http://hdl.handle.net/1721.1/70958
Department
Massachusetts Institute of Technology. Department of Biology; Whitehead Institute for Biomedical Research
Journal
Molecular Cell
Publisher
Elsevier
Citation
Wendler, Petra et al. “Motor Mechanism for Protein Threading Through Hsp104.” Molecular Cell 34.1 (2009): 81–92. Web. 25 May 2012. © 2009 Elsevier Inc.
Version: Final published version
ISSN
1097-2765

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.