Show simple item record

dc.contributor.authorWang, Harris H.
dc.contributor.authorVonner, Ashley J.
dc.contributor.authorChurch, George M.
dc.contributor.authorXu, George Jing
dc.contributor.authorChurch, George M.
dc.date.accessioned2012-06-01T18:46:43Z
dc.date.available2012-06-01T18:46:43Z
dc.date.issued2011-05
dc.date.submitted2011-03
dc.identifier.issn0305-1048
dc.identifier.issn1362-4962
dc.identifier.urihttp://hdl.handle.net/1721.1/70994
dc.description.abstractGenome engineering using single-stranded oligonucleotides is an efficient method for generating small chromosomal and episomal modifications in a variety of host organisms. The efficiency of this allelic replacement strategy is highly dependent on avoidance of the endogenous mismatch repair (MMR) machinery. However, global MMR inactivation generally results in significant accumulation of undesired background mutations. Here, we present a novel strategy using oligos containing chemically modified bases (2′-Fluoro-Uridine, 5-Methyl-deoxyCytidine, 2,6-Diaminopurine or Iso-deoxyGuanosine) in place of the standard T, C, A or G to avoid mismatch detection and repair, which we tested in Escherichia coli. This strategy increases transient allelic-replacement efficiencies by up to 20-fold, while maintaining a 100-fold lower background mutation level. We further show that the mismatched bases between the full length oligo and the chromosome are often not incorporated at the target site, probably due to nuclease activity at the 5′ and 3′ termini of the oligo. These results further elucidate the mechanism of oligo-mediated allelic replacement (OMAR) and enable improved methodologies for efficient, large-scale engineering of genomes.en_US
dc.description.sponsorshipSynthetic Biology Engineering Research Centeren_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant #SA5283-11210)en_US
dc.description.sponsorshipUnited States. Dept. of Energy (Genomes to Life Center) (Grant #DE-FG02-03ER6344)en_US
dc.description.sponsorshipWyss Institute for Biologically Inspired Engineeringen_US
dc.language.isoen_US
dc.publisherOxford University Press (OUP)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1093/nar/gkr183en_US
dc.rightsCreative Commons Attribution Non-Commercialen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc/2.5en_US
dc.sourceOxforden_US
dc.titleModified bases enable high-efficiency oligonucleotide-mediated allelic replacement via mismatch repair evasionen_US
dc.typeArticleen_US
dc.identifier.citationWang, H. H. et al. “Modified Bases Enable High-efficiency Oligonucleotide-mediated Allelic Replacement via Mismatch Repair Evasion.” Nucleic Acids Research 39.16 (2011): 7336–7347. Web. 1 June 2012.en_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.approverChurch, George M.
dc.contributor.mitauthorXu, George Jing
dc.contributor.mitauthorChurch, George M.
dc.relation.journalNucleic Acids Researchen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsWang, H. H.; Xu, G.; Vonner, A. J.; Church, G.en
dc.identifier.orcidhttps://orcid.org/0000-0003-3222-0772
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record