Show simple item record

dc.contributor.authorBeineke, Jennifer
dc.contributor.authorBrubaker, Benjamin Brock
dc.contributor.authorFrechette, Sharon
dc.date.accessioned2012-06-28T18:06:18Z
dc.date.available2012-06-28T18:06:18Z
dc.date.issued2012-07
dc.identifier.isbn978-0-8176-8333-7
dc.identifier.urihttp://hdl.handle.net/1721.1/71257
dc.description.abstractThis paper presents a definition for a family of Weyl group multiple Dirichlet series (henceforth \MDS") of Cartan type C using a combinatorial model for crystal bases due to Berenstein-Zelevinsky [2] and Littelmann [12]. Recall that a Weyl group MDS is a Dirichlet series in several complex variables which (at least conjecturally) possesses analytic continuation to a meromorphic function and satisfies functional equations whose action on the complex space is isomorphic to the given Weyl group. In [1], we presented a definition for such a series in terms of a basis for highest weight representations of Sp(2r;C) { Type C Gelfand-Tsetlin patterns { and proved that the series satisfied the conjectured analytic properties in a number of special cases. Here we recast that definition in the language of crystal bases and find that the resulting MDS, whose form appears as an unmotivated miracle in the language of Gelfand-Tsetlin patterns, is more naturally defined in this new language.en_US
dc.language.isoen_US
dc.publisherBirkhauser Bostonen_US
dc.relation.isversionofhttp://www.springer.com/birkhauser/mathematics/book/978-0-8176-8333-7en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleA crystal definition for symplectic multiple Dirichlet seriesen_US
dc.typeArticleen_US
dc.identifier.citationBeineke, Jennifer, Ben Brubaker and Sharon Frechette. "A crystal definition for symplectic multiple Dirichlet series." Chapter 2 in Multiple Dirichlet Series, L-functions and Automorphic Forms, Eds, Daniel Bump, Solomon Friedberg, and Dorian Goldfeld, Springer Science+Business Media, LLC 2012 (Series: Progress in Mathematics, vol. 300. July 31, 2012).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.approverBrubaker, Benjamin Brock
dc.contributor.mitauthorBrubaker, Benjamin Brock
dc.contributor.mitauthorFrechette, Sharon
dc.contributor.mitauthorBeineke, Jennifer
dc.relation.journalProgress in Mathematics, vol. 300, 2012en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/BookItemen_US
dspace.orderedauthorsBeineke, Jennifer; Brubaker, Ben; Frechette, Sharonen_US
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record