MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Light pulse atom interferometry at short interrogation times for inertial navigation

Author(s)
Butts, David LaGrange
Thumbnail
DownloadFull printable version (15.72Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.
Advisor
Richard Stoner, Shaoul Ezekiel and Wolfgang Ketterle.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Light pulse atom interferometry with cold atoms is a promising inertial sensing technology for high accuracy navigation. At present, laboratory atom interferometers match or surpass state of the art mechanical and optical inertial sensors in terms of sensitivity and long term stability. Conventional laboratory systems, however, do not achieve sufficient bandwidth or dynamic range to operate in a dynamic environment; furthermore, the size, weight and power of laboratory sensors are unsuitable for many applications. In this thesis, atom interferometry is realized at shorter interrogation times (<15 ms as opposed to >100 ms), in which the required sensitivity, bandwidth and dynamic range of navigation systems becomes feasible. A cold atom gravimeter testbed using atom interferometry with stimulated Raman transitions was developed, which executed the entire measurement cycle in a compact vacuum cell (~ ~ 80 cc). The system demonstrated an inferred sensitivity of 2 [mu]g[square root] Hz for an interrogation time of 2T = 10 ms (based on measured phase SNR, scale factor, and repetition rate). With realistic improvements to the apparatus, it could achieve a sensitivity of <1 [mu]g[square root]Hz, advancing toward the realization of a compact, atom-based inertial measurement unit with unprecedented performance. In addition, a method for increasing the momentum splitting of Raman pulse interferometers with sequential Raman pulses was demonstrated, and interferometer area was increased by up to a factor of nine without altering the interrogation time (corresponding to a momentum splitting of 18hk, the largest reported for Raman pulse interferometry). Composite Raman pulses were implemented to improve population transfer efficiency, which limits the achievable increase in precision. Finally, the effect of coherent population trapping (CPT) induced by Raman pulse atom optics was identified as a source of systematic phase shifts in the [pi]/2 - [pi] - [pi]/2 interferometer used for sensing acceleration and rotation. CPT effects were modeled in a three-level (A) atom, and were experimentally characterized using atom interferometry. Based on the magnitude of measured coherences induced by Raman pulse atom optics, phase shifts of several milliradians should occur for a typical GHz-scale laser detuning. A method for suppressing this bias in realistic operation by Raman beam propagation direction reversal is proposed.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, February 2012.
 
"February 2012." Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 141-150).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/71453
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.