Show simple item record

dc.contributor.advisorManolis Kellis.en_US
dc.contributor.authorLin, Michael F. (Michael Fong-Jay)en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2012-07-02T15:46:34Z
dc.date.available2012-07-02T15:46:34Z
dc.date.copyright2012en_US
dc.date.issued2012en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/71480
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 93-105).en_US
dc.description.abstractWe develop novel methods for comparative genomics analysis of protein-coding genes using phylogenetic codon models, in pursuit of two main lines of biological investigation: First, we develop PhyloCSF, an algorithm based on empirical phylogenetic codon models to distinguish protein-coding and non-coding regions in multi-species genome alignments. We benchmark PhyloCSF to show that it outperforms other methods, and we apply it to discover novel genes and analyze existing gene annotations in the human, mouse, zebrafish, fruitfly and fungal genomes. We use our predictions to revise the canonical annotations of these genomes in collaboration with GENCODE, FlyBase and other curators. We also reveal a surprisingly widespread mechanism of stop codon readthrough in the fruitfly genome, with additional examples found in mammals. Our work contributes to more-complete gene catalogs and sheds light on fascinating unusual gene structures in the human and other eukaryotic genomes. Second, we design phylogenetic codon models to detect evolutionary constraint at synonymous sites of mammalian genes. These sites are frequently assumed to evolve neutrally, but increased conservation would suggest they encode additional information overlapping the protein-coding sequence. We produce the first high-resolution catalog of individual human coding regions showing highly conserved synonymous sites across mammals, which we call Synonymous Constraint Elements (SCEs). We locate more than 10,000 SCEs, covering -2% of synonymous sites, and found within over one-quarter of all human genes. We present evidence that they indeed encode numerous overlapping biological functions, including splicing- and translation-associated regulatory motifs, microRNA target sites, RNA secondary structures, dual-coding genes, and developmental enhancers. We also develop a lineage-specific test which we use to study the evolutionary history of SCEs, and a Bayesian framework that further increases the resolution with which we can identify them. Our methods and datasets can inform future studies on mammalian gene structures, human disease associations, and personal genome interpretation.en_US
dc.description.statementofresponsibilityby Michael F. Lin.en_US
dc.format.extent105 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleIdentifying protein-coding genes and synonymous constraint elements using phylogenetic codon modelsen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc795569070en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record