MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Structural interconversions modulate activity of Escherichia coli ribonucleotide reductase

Author(s)
Ando, Nozomi; Brignole, Edward J.; Zimanyi, Christina M.; Funk, Michael Andrew; Yokoyama, Kenichi; Asturias, Francisco J.; Stubbe, JoAnne; Drennan, Catherine L; ... Show more Show less
Thumbnail
DownloadAndo-2011-Structural interconv.pdf (1.426Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Essential for DNA biosynthesis and repair, ribonucleotide reductases (RNRs) convert ribonucleotides to deoxyribonucleotides via radical-based chemistry. Although long known that allosteric regulation of RNR activity is vital for cell health, the molecular basis of this regulation has been enigmatic, largely due to a lack of structural information about how the catalytic subunit (α2) and the radical-generation subunit (β2) interact. Here we present the first structure of a complex between α2 and β2 subunits for the prototypic RNR from Escherichia coli. Using four techniques (small-angle X-ray scattering, X-ray crystallography, electron microscopy, and analytical ultracentrifugation), we describe an unprecedented α4β4 ring-like structure in the presence of the negative activity effector dATP and provide structural support for an active α2β2 configuration. We demonstrate that, under physiological conditions, E. coli RNR exists as a mixture of transient α2β2 and α4β4 species whose distributions are modulated by allosteric effectors. We further show that this interconversion between α2β2 and α4β4 entails dramatic subunit rearrangements, providing a stunning molecular explanation for the allosteric regulation of RNR activity in E. coli.
Date issued
2011-12
URI
http://hdl.handle.net/1721.1/71843
Department
Massachusetts Institute of Technology. Department of Biology; Massachusetts Institute of Technology. Department of Chemistry
Journal
Proceedings of the National Academy of Sciences of the United States of America
Publisher
National Academy of Sciences of the United States of America
Citation
Ando, N. et al. “Structural Interconversions Modulate Activity of Escherichia Coli Ribonucleotide Reductase.” Proceedings of the National Academy of Sciences 108.52 (2011): 21046–21051. Copyright ©2011 by the National Academy of Sciences
Version: Final published version
ISSN
0027-8424
1091-6490

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.