MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sox2 co-occupies distal enhancer elements with cell-type-specific POU factors to specify cell identity in embryonic stem cells and neural precursor cells

Author(s)
Lodato, Michael A. (Michael Anthony)
Thumbnail
DownloadFull printable version (2.045Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Biology.
Advisor
Rudolf Jaenisch.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Sox2 is a master regulator of two distinct cellular states, that of pluripotent embryonic stem cells (ESCs) and multipotent neural progenitor cells (NPCs), but what common or distinct roles Sox2 may play in these cell types not fully understood. Further, the molecular mechanisms by which Sox2 can specify two distinct cell identities are as of yet unclear. This thesis is aimed at answering these fundamental questions. In ESCs, Sox2 was associated with a subset of poised regulators of nervous system development, and upon differentiation into NPCs Sox2 selectively activates those which are important for progenitor cell state, while keeping others poised to become activated in later neural development. These data suggested that Sox2 might act as a pioneer factor for neural development throughout embryogenesis. While Sox2 is known to co-occupy target loci in ESCs with the POU factor Oct4, in NPCs Sox2 interacts with the central-nervous-system-expressed POU factors Brn1 and Brn2. By utilizing distinct composite Sox:Octamer motifs in each cell type, Sox2:POU modules control the expression of thousands of genes involved in the development of the neural lineage in a cell-type-specific manner. These data advance our understanding of the mechanism by which transcription factors control cell fate transitions, and indicate that combinatorial interactions between transcription factors may be a pervasive mechanism of transcriptional control in development
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, June 2012.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
"June 2012." Cataloged from student submitted PDF version of thesis.
 
Includes bibliographical references.
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/72631
Department
Massachusetts Institute of Technology. Department of Biology
Publisher
Massachusetts Institute of Technology
Keywords
Biology.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.