MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • Artificial Intelligence Lab Publications
  • AI Memos (1959 - 2004)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • Artificial Intelligence Lab Publications
  • AI Memos (1959 - 2004)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bagging Regularizes

Author(s)
Poggio, Tomaso; Rifkin, Ryan; Mukherjee, Sayan; Rakhlin, Alex
Thumbnail
DownloadAIM-2002-003.ps (885.0Kb)
Additional downloads
AIM-2002-003.pdf (278.9Kb)
Metadata
Show full item record
Abstract
Intuitively, we expect that averaging --- or bagging --- different regressors with low correlation should smooth their behavior and be somewhat similar to regularization. In this note we make this intuition precise. Using an almost classical definition of stability, we prove that a certain form of averaging provides generalization bounds with a rate of convergence of the same order as Tikhonov regularization --- similar to fashionable RKHS-based learning algorithms.
Date issued
2002-03-01
URI
http://hdl.handle.net/1721.1/7268
Other identifiers
AIM-2002-003
CBCL-214
Series/Report no.
AIM-2002-003CBCL-214
Keywords
AI, Bagging, stability, regularization

Collections
  • AI Memos (1959 - 2004)
  • CBCL Memos (1993 - 2004)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.