MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modeling reduction of pandemic influenza using pharmaceutical and non pharmaceutical interventions in a heterogeneous population

Author(s)
Teytelman, Anna
Thumbnail
DownloadFull printable version (21.52Mb)
Other Contributors
Massachusetts Institute of Technology. Operations Research Center.
Advisor
Richard C. Larson.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In an event of a pandemic influenza outbreak such as the great "Spanish Flu" of 1918 and the more recent 2009-2010 H1N1 "Swine Flu" scare, pharmaceutical as well as non-pharmaceutical resources are limited in availability and effectiveness. In this thesis we apply OR methods to evaluate the effectiveness of such resources and the strategies for reducing the number of infections resulting from an outbreak. In the first half of this work, we focus on epidemiological analysis of influenza modeling in a heterogeneous population. The majority of existing epidemiological literature models influenza spread in a statistically homogeneous population, but the model-based inclusion of heterogeneity by contact rate, susceptibility, and infectivity introduces significant effects on disease progression. We introduce a new discrete-time influenza outbreak model for a heterogeneous population and use it to describe the changes in a population's flu-related characteristics over time. This information allows us to evaluate the effectiveness of different vaccine targeting techniques in achieving herd immunity, that is, the point at which there is no further growth in new infections. In the second half of this work we switch to a practical application of OR methods in a pandemic situation. We evaluate the effectiveness of vaccines administered to US states during the 2009-2010 H1N1 pandemic. Since the US is geographically diverse and large, the outbreak progressed at different rates and started at different times in each individual state. We discuss dynamic, multi-regional, vaccine allocation schemes for large geographical entities that take into account the different conditions of the epidemic in each region and maximize the total effect of available vaccines. In addition, we discuss effective strategies for combining vaccines with non-pharmaceutical interventions such as hand-washing and public awareness campaigns to decrease the strain of an outbreak on the population.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references.
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/72847
Department
Massachusetts Institute of Technology. Operations Research Center; Sloan School of Management
Publisher
Massachusetts Institute of Technology
Keywords
Operations Research Center.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.