Show simple item record

dc.contributor.advisorJohn M. Reilly.en_US
dc.contributor.authorMadan, Tanvir Singhen_US
dc.contributor.otherMassachusetts Institute of Technology. Technology and Policy Program.en_US
dc.date.accessioned2012-09-13T19:00:37Z
dc.date.available2012-09-13T19:00:37Z
dc.date.copyright2012en_US
dc.date.issued2012en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/72900
dc.descriptionThesis (S.M. in Technology and Policy)-- Massachusetts Institute of Technology, Engineering Systems Division, Technology and Policy Program, 2012.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 59-60).en_US
dc.description.abstractThe residential sector in the U.S. is responsible for about 20% of the country's primary energy use (EIA, 2011). Studies estimate that efficiency improvements in this sector can reduce household energy consumption by over 25% by 2020 (McKinsey Global Energy and Materials, 2009). In this thesis, given the increasing amount of attention that both policy-makers and industry are giving to residential energy use, I examine the implications of end-use electrification and efficiency improvements in households. In particular, I focus on high efficiency electric technologies for heating and cooling (referred to as HVAC) needs. Advancements in technologies such as heat pumps are beginning to make the economic case for switching from end-uses of gas to end-uses of electricity in the residential sector. I examine the implications of such end-use electrification, ranging from its impact on energy consumption to its contribution to the abatement of greenhouse gas (GHG) emissions. I use the MIT Emissions Prediction and Policy Analysis (EPPA) model, a computable general equilibrium model, to analyze the research question. The EPPA model captures full economy-wide impacts of policy mandates and technology changes. First, I added further detail to household energy consumption in the model. Then, I introduced technology changes corresponding to advanced electric technologies for residential heating and cooling and tested their impact with policies that either support or inhibit their entry into the marketplace. I find two interesting results from the analysis. First, if policies are enacted to support advanced electric HVAC technologies, they displace end-uses of gas and increase household electricity consumption. Second, household end-use electrification in the U.S. leads to an increase in overall emissions in the economy, given that the overall emissions of any electric appliance depend not only on the end-use efficiency of the appliance but also on the efficiency of generating and distributing electricity. Thus, end use electrification only helps in emissions abatement if the power sector becomes less carbon intensive.en_US
dc.description.statementofresponsibilityby Tanvir Singh Madan.en_US
dc.format.extent60 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectEngineering Systems Division.en_US
dc.subjectTechnology and Policy Program.en_US
dc.titleEnd-use electrification in the residential sector : a general equilibrium analysis of technology advancementsen_US
dc.title.alternativeGeneral equilibrium analysis of technology advancementsen_US
dc.typeThesisen_US
dc.description.degreeS.M.in Technology and Policyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Engineering Systems Division
dc.contributor.departmentTechnology and Policy Program
dc.identifier.oclc808488396en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record