Show simple item record

dc.contributor.authorTobenkin, Mark M.
dc.contributor.authorManchester, Ian R.
dc.contributor.authorWang, Jennifer
dc.contributor.authorMegretski, Alexandre
dc.contributor.authorTedrake, Russell Louis
dc.date.accessioned2012-09-13T19:46:54Z
dc.date.available2012-09-13T19:46:54Z
dc.date.issued2010-12
dc.identifier.isbn978-1-4244-7745-6
dc.identifier.issn0743-1546
dc.identifier.urihttp://hdl.handle.net/1721.1/72943
dc.description.abstractA new framework for nonlinear system identification is presented in terms of optimal fitting of stable nonlinear state space equations to input/output/state data, with a performance objective defined as a measure of robustness of the simulation error with respect to equation errors. Basic definitions and analytical results are presented. The utility of the method is illustrated on a simple simulation example as well as experimental recordings from a live neuron.en_US
dc.description.sponsorshipNational Science Foundation (U.S.). (Grant number 0835947)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/CDC.2010.5718114en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceIEEEen_US
dc.titleConvex optimization in identification of stable non-linear state space modelsen_US
dc.typeArticleen_US
dc.identifier.citationTobenkin, Mark M. et al. “Convex Optimization in Identification of Stable Non-linear State Space Models.” Proceedings of the 49th IEEE Conference on Decision and Control (CDC), 2010. 7232–7237. © Copyright 2010 IEEEen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Information and Decision Systemsen_US
dc.contributor.approverMegretski, Alexandre
dc.contributor.mitauthorTobenkin, Mark M.
dc.contributor.mitauthorManchester, Ian R.
dc.contributor.mitauthorWang, Jennifer
dc.contributor.mitauthorMegretski, Alexandre
dc.contributor.mitauthorTedrake, Russell Louis
dc.relation.journalProceedings of the 49th IEEE Conference on Decision and Control (CDC), 2010en_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsTobenkin, Mark M.; Manchester, Ian R.; Wang, Jennifer; Megretski, Alexandre; Tedrake, Russen
dc.identifier.orcidhttps://orcid.org/0000-0001-9088-0205
dc.identifier.orcidhttps://orcid.org/0000-0002-8712-7092
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record