Cleanroom design
Author(s)
Erickson, Douglas H
DownloadFull printable version (16.27Mb)
Alternative title
"Clean Room" Design.
Other Contributors
Massachusetts Institute of Technology. Dept. of Architecture.
Advisor
Leon Glicksman.
Terms of use
Metadata
Show full item recordAbstract
The development of the integrated circuit which replaced the vacuum tube, started the size reduction process for computer components. These integrated circuits are made from silicon (chips) and are comprised of electronic switches, or gates. The gates are measured in size of microns. The diameter of a human hair is approximately 60 microns across. Facilities that develop, and manufacture these integrated circuits require the strictest guidelines for environmental controls and prevention of potential health hazards that personnel may encounter while working in these facilities. The major environmental controls are particle size and number, temperature, relative humidity, air flow velocity, and pressure. Providing this and other forms of control are used to develop what are called cleanrooms. Cleanrooms are used for the manufacture of a number of different kinds of products. The focus of this research will be on the microelectronics industry. This industry leads all other industries in developing systems, standards, and monitoring technologies, to control microcontamination which is the essence of what a cleanroom does. This thesis will be divided into two parts. The first part defines what a cleanroom is and what it is comprised of. Next, there will be methods presented to design this type of space in a more energy and cost efficient manner. The second part involves the research in the vertical laminar flow aspect of operating a cleanroom. The vertical laminar flow offers a structured method for controlling air flow and provides an effective means for discharging particulates out of the cleanroom. By comparison, the conventional air flow system throws the particulates in a random fashion. The vertical laminar flow has its limitations. By itself, the vertical flow operates well, but people, and equipment cause turbulence which disrupts its effectiveness. Working with these variables through research, an alternate method of working with this vertical laminar flow was developed. The results, recorded by photographs show an alternative for dealing with the turbulence and eddys caused by the operations in the cleanroom. There will be a discussion followed by a number of questions, and responses which will be the basis for this research on vertical laminar flow.
Description
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Architecture, 1987. Includes bibliographical references (leaves 147-150).
Date issued
1987Department
Massachusetts Institute of Technology. Department of ArchitecturePublisher
Massachusetts Institute of Technology
Keywords
Architecture.