MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Thom-Sebastiani and duality for matrix factorizations, and results on the higher structures of the Hochschild invariants

Author(s)
Preygel, Anatoly
Thumbnail
DownloadFull printable version (8.775Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mathematics.
Advisor
Jacob A. Lurie.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The derived category of a hypersurface has an action by "cohomology operations" k[[beta]], deg[beta] = 2, underlying the 2-periodic structure on its category of singularities (as matrix factorizations). We prove a Thom-Sebastiani type Theorem, identifying the k[[beta]]-linear tensor products of these dg categories with coherent complexes on the zero locus of the sum potential on the product (with a support condition), and identify the dg category of colimit-preserving k[[beta]]-linear functors between Ind-completions with Ind-coherent complexes on the zero locus of the difference potential (with a support condition). These results imply the analogous statements for the 2-periodic dg categories of matrix factorizations. We also present a viewpoint on matrix factorizations in terms of (formal) groups actions on categories that is conducive to formulating functorial statements and in particular to the computation of higher algebraic structures on Hochschild invariants. Some applications include: we refine and establish the expected computation of 2-periodic Hochschild invariants of matrix factorizations; we show that the category of matrix factorizations is smooth, and is proper when the critical locus is proper; we show how Calabi-Yau structures on matrix factorizations arise from volume forms on the total space; we establish a version of Knörrer Periodicity for eliminating metabolic quadratic bundles over a base.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 149-150).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/73373
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.